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Overview
• Introduction to Genetic Programming

• Populations and Generations
• Mutation and Crossover
• Fitness and Natural Selection

• Genetic Programming & Relative BR measurements of
doubly Cabibbo suppressed decays
• D+ → K +π+π− (a check of the method)
• Λ+

c → pK+π−

• D+
s → K +K +π−

• Systematic uncertainties
• “Standard” and GP specific

• Conclusions
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Motivation
Initial looks at these decays showed not quite enough sensitivity.

Was there a way to improve our search by novel event selection
techniques? Can we combine indicators of a good event in a
more efficient way?

These analyses are good first test since candidate and
normalizing decay modes are so similar.

GP also looked like a method that might lend insight into our
data.

Keep an open mind about new ideas and how we might use them.
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GP Fundamentals
To solve problems, maybe we should emulate biology and the
evolutionary process. (→ Genetic Algorithms)

Since we will use computer programs to implement our
solutions, maybe theform of our solution shouldbea computer
program. (→ Genetic Programming)

• Applies a model of biological evolution to program
“discovery”

• Iterative procedure on populations of programs
• Pioneered by John Koza, seminal reference:Genetic

Programming: On the Programming of Computers by
Natural Selection(1992)

• Since 1992, more than 4,000 papers applied to a wide range
of problems

Eric Vaandering – A Search for Doubly Cabibbo Suppressed Decays Using Genetic Programming – p. 4



Populations and Generations
This discussion may be a little detailed, but keep a few things in
mind:

• Program≡ Organism
• Program will filter events
• We need a way to know if one filter is better than another

Genetic Programming works by transforming one group of
programs (filters) in generationn into another group of programs
in generationn + 1. There are typically a few hundred to a few
thousand programs per generation.
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Gene Cross-over and Mutation
There are two processes which, combined with natural selection,
drive biological evolution.

1) Biological
(DNA)

Cross-over

2) Mutations in nature change the genetic code for a small region
of DNA. Usually are harmful or neutral; occasionally helpful
(better/different organism arises).
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Preparatory Steps
To prepare to solve a problem with Genetic Programming, two
steps are necessary:

• Define a group of functions (≡ genes)
• Some functions may provide an input
• Other functions may perform an operation

• +, −, >, < are all “functions”
• So are IF-THEN-ELSE
• Output of one function is input to another

• Determine a way to separate good programs from bad

How I’ll use this:
• Input values: N-tuple variables that describe an event
• For each event: final output value→ keep or discard event
• How “good” is the collection of kept events?
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Tree Representation
Genetic Programming fundamentals are easier to illustrateif we
adopt a “Tree” representation of a program. An example of this
representation:

Code: Program tree

float myfunc(float x, float y) {
float val;
if (x > y) {

val = x*x + y;
} else {

val = y*y + x;
}
return val;

}

IF

>

x y

+

×

x x

y

+

×

y y

x

Return val.
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Tree Representation, cont.
From a fraction of our tree, we can see a few things:

+

×

x x

y

Two kinds of “nodes”
• There are functions (IF,>, +, ∗)
• There are “terminals” (x, y)

If we allow any function or terminal at
any position, then all operations must be
defined:

• IF (float)
• x + (y > x)

• Divide by zero (if we use division)

A population of trees is built randomly choosing functions or
terminals until all branches are terminated.
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Crossover (Recombination)
Two programs and crossover points within them are chosen.
Sub-trees are removed and swapped between trees, giving two
new “children”

−

+

x 1

y

+

1 ×

x x

→

−

x y

+

1 ×

+

x 1

x

It may combine the best aspects of both parents into one child(of
course, we are just as likely to end up with the worst aspects in
one child).
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Mutation
Occasionally we want to introduce a mutation into a program or
tree.

+

×

x x

−

y y

y x

Pick a parent & mutation point
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Mutation
Occasionally we want to introduce a mutation into a program or
tree.

+

×

x x

−

x +

y x

Pick a parent & mutation point
Remove the subtree
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Mutation
Occasionally we want to introduce a mutation into a program or
tree.

+

×

x x

−

x +

y x

Pick a parent & mutation point
Remove the subtree
Build a new subtree as if it were
a “root” tree
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Mutation
Occasionally we want to introduce a mutation into a program or
tree.

+

×

x x

−

x +

y x

Pick a parent & mutation point
Remove the subtree
Build a new subtree as if it were
a “root” tree

Mutation can often be very de-
structive in Genetic Program-
ming

Remember: Input variables describe event. Program/tree output
variable classifies event.
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Practical considerations
Obviously, a tree can grow nearly infinite in size. This is usually
undesirable. There are ways to control this:

• Set limits on number of nodes
• Set limits on depth of nodes
• Initial, randomly created trees are kept small

So far we’ve mimickedhoworganisms reproduce.
The other half of the problem iswhich onesreproduce.
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Survival of the Fittest
In nature, we know that the more fit an organism is for it’s
environment, the more likely it is to reproduce. This is one of the
basic tenets of evolutionary theory.

• Organisms with serious deformities are still-born or die ata
young age

• Faster, stronger, or longer lived organisms will produce
more offspring than “normal” organisms

We see this behavior in nature all the time
Eric Vaandering – A Search for Doubly Cabibbo Suppressed Decays Using Genetic Programming – p. 16



Survival of the Fittest in GP
The Genetic Programming method mimics survival of the fittest
by determining a numericalfitnessfor each program. Which
programs reproduce is based on this fitness.

Possibilities:
• How many events does it classify correctly?
• In how many cases does it provide the correct output?
• How well does it fit the data?

Considerations:
• The problemmustallow for inexact solutions. There may

be a singlecorrectprogram, but there must be a way to
distinguish between increasingly incorrect programs.
(Otherwise we are engaging in a random search.)

• Pathological programs→ very poor fitness (still-born)
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Reproduction Probabilities
Programs are chosen randomly to “breed” and populate the next
generation according to their fitness. We use something likea
roulette wheel where the size of the slot is proportional to the
fitness of the program.

#2
Prog. #1

#5

#4 Best

#3 Worst

Crossover: Spin wheel twice to
select two parents.

Mutation: Spin wheel once to
select one parent.

Some parents will be selected
multiple times, some not at all.

• The best program ismost likelyto be chosen, but isnot
guaranteedto be chosen

• The worst programmaybe chosen
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Running the GP
Putting this all together, we are ready to “run” the GP (find a
solution).

• User has defined functions, variables, and measure of
fitness

• Generate a population of programs (few hundred to few
thousand)

• Test each program against fitness definition
• Choose genetic operation (crossover/mutation) and parent

programs to create next generation, randomly according to
fitness

• Repeat this process generation after generation
• Often tens of generations are needed to find the best

program
• At the end, we have a large number of programs; look at the

best one found
Eric Vaandering – A Search for Doubly Cabibbo Suppressed Decays Using Genetic Programming – p. 19



Application to HEP
Ok, so all this may be interesting to computer scientists, but how
does it apply to High Energy Physics?

In FOCUS, we typically select interesting (signal, we hope)
events from background processes using cuts on interesting
variables. That is, we construct variableswethink are
interesting, and then require that an event pass the AND of a set
of selection criteria.

Instead, what if we give a Genetic Programming framework the
variables we think are interesting, and allowit to construct a
filter for the events?

• If an AND of cuts is the best solution, the GP can find that

This is not such a radical approach.E.g., neural networks and
boosted decision trees are used effectively in many experiments.
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Questions
When considering an approach like this, some questions
naturally arise:

• Does it do as well as traditional methods do?
• Can we find new cuts for traditional analyses? Yes!

• How do we know it’s not biased?
• We do optimize on data (but not on the signal we are

interested in)
• To check, all optimizations are on half the events

• The tree can grow large with useless information.
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Flavor Physics in 2 Minutes
Quarks (and hadrons)decayweakly by emitting a virtualW
boson which couples the up and down type quarks. Because
weak and mass eigenstates are mixed, decays cross generations.
We use the CKM matrix to describe these mixing couplings.

d s b

u

c

t

We can see that the charm (c) quark
is coupled mostly to the strange (s), a
little to the down (d), and very little to
the bottom (b) quarks.

Of course, c → b transitions are not
kinematically allowed.

Historically, the2 × 2 sub-matrix was parameterized by the
Cabibbo angle,θc with elements ofsin θc andcos θc. Since the
decay coupling is squared, the probability of ac → d transition
relative toc → s is sin2 θc/ cos2 θc = tan2 θc ≈ 5%.
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Cabibbo Suppressed Decays
DoublyCabibbo suppressed decays can only be observed in
charm. BothW vertices are Cabibbo suppressed.

q

c

q

s

d̄

u

q

c

q

d

s̄

u

Cabibbo Favored Doubly Cabibbo Suppressed

Doubly Cabibbo suppressed decays are chosen as a first test of
the method since the final state particles are often similar (e.g.,
Λ+

c → pK−π+ vs.Λ+
c → pK+π−). This eliminates many

possible sources of systematics arising from inexact modeling of
the selection process.

Expected relative branching ratios:∼ tan4 θc ≈ 0.25%.
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FOCUS Spectrometer
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Highlights:
• γ beam on segmented target
• Silicon vertexing
• EM/hadronic calorimeters

• MWPC tracking

• ThresholdČerenkov
• Muon detectors
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Target and Vertexing

π
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Vertex

Secondary
Vertex
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p

Some details of the FOCUS candidate driven vertexing
• ℓ: Distance between production and decay vertices.ℓ/σℓ,

significance of separation (signature for weak decays)
• OoT: Significance of decay being out of target material
• CLP, CLS: Conf. Levels of production and decay vertices
• Iso1: CL that tracks from decay vertex are consistent with

production vertex
• Iso2: CL that other tracks (incl. from production vertex) are

consistent with decay vertex
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Čerenkov System
• Three multi-cell thresholďCerenkov detectors
• Gives positive particle ID over limited momentum ranges

12864324 16
3-chamber tracks

8

5-chamber tracks

K

e

π

p

Positive ID ranges for tracks (GeV/c)

• We use an ID method based on log-likelihoods
• For each particle hypothesis, find probability of

observing the # of photons seen
• Calculate differences between particle hypotheses
• Gives a continuum of particle ID values
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Variables and Operators
Give the GP lots of things to work with:

Functions (22) Variables (D+–38,D+
s –37,Λ+

c –40)

× sign ℓ ∆W (πp) 0,1

/ negate σℓ ∆W (Kp) #dau

+ max ℓ/σℓ ∆W (πK ) σt

− min OoT πcon pT

xy NOT CLS ∆W (K π) Σp2
T

√ AND CLP Trackχ2’s merr

log OR Iso1 OS Vertex CL µmax

> XOR Iso2 OS∆W (πK ) TS/NoTS

< IF #life OS CLµ REME

<=> sin Pri. OoT Real(−2, +2) DLink

f(n) cos p(Λ+
c /D+

s /D+) Int (−10, +10) Σ
(∗)
c tags

One typical program: 80 nodes (40 func., 40 var.)
→ 4022 × 4040 = 2 · 1099 combinations.
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D+ → K +π+π−

While Λ+
c → pK+π− andD+

s → K +K +π− are the decays we’re
pursuing with this method,D+ → K +π+π− is a useful check.

This branching ratio has been measured and is surprisingly large
(almost3 tan4 θc). The PDG value is0.68 ± 0.08% relative to
D+ → K −π+π+.

A FOCUS Dalitz and branching ratio measurement dominates
this (0.65 ± 0.08 ± 0.04%), so lets see how Genetic
Programming fares vs. traditional methods
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Signals Before Optimization
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Evaluating the GP

We use GP generated filters to classify
each event as “pass” or “fail.” We use the
same filter for both CF and DCS decays
and only consider “pass” events.
Pass≡ return value> 0.

Want to predict significance of DCS
signal:

SDCS√
SDCS+BDCS

∝ SCF√
BDCS

c · SCF

≈ 0

>

/

ℓ σℓ

5

A very simple tree,
just a cut onℓ/σℓ > 5

Assume effect of filter on CF and DCS signal events is the same

FindSCF andBDCS from fits to the data (1
2

events, DCS signal
blinded)
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Comparison with Cut Analysis
• From PLB 601:10–19, measured BR ofD+ → K +π+π−

• Rel. BR — PLB:0.65 ± 0.08 ± 0.04, GP:0.76 ± 0.06

• Not a perfect comparison, not optimized onS/
√

S + B

• Extra corrections and studies in published analysis

invariant mass K+ π- π+
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• Similar signal to noise
• Cuts: Yield= 189 ± 24 events
• GP: Yield= 466 ± 36 events
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Evolution of Population
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Evolution of Best Programs
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Still evolving at 40 generations
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Λ
+
c → pK +π−

The first decay we search for isΛ+
c → pK+π−. There are no

observations or limits. Even an observation oftan4 θc relative to
Λ+

c → pK−π+ is challenging for FOCUS, but it’s even more
difficult.

The Cabibbo favored mode has anW -exchange contribution
while the DCS decay does not. (This contribution causes theΛ+

c

lifetime to be about half theΞ+
c (csu) lifetime.)

u

d

c

u

u

q

q

s

This means the expected branching ratio will be reduced.
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Pre-GP selectionΛ+
c signals
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Signals after GP selection
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Comparing with Cut Method
Compare this analysis with an old attempt with normal method:

GP found3070 ± 60 CF and
1.2 ± 6.6 DCS events

Figure of merit isσYDCS/YCF

6.6

3070
vs.

4.8

1450

is 0.21% vs. 0.33%
(a significant improvement)
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Evolution of Population
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Evolution of Best Programs

Generation
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Not much progress after about 50 generations
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Best tree (72
nd generation)
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GP-Induced Systematics
Because this method is new and unsupervised we worry about
two things:

• Are the effects of the GP filters well modeled by MC?
• Could it be finding signal where none exists or artificially

reducing backgrounds?

To address the second point, precautions are taken:
• DCS signal region is blinded
• Require a minimum number of events in DCS histogram
• Add a small penalty to fitness for each node
• Only optimize with even numbered events

Last point allows us to check “blindness.” Will also address
modeling.
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GP Bias Check
No significant descrepancies between used and unused events
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GP Efficiency Cross-check
Want to understand if MC accurately predicts efficiency ratio for
GP selected events:ǫDCS

GP /ǫCF
GP. If the MC makes the same

mistakes in DCS and CF, this ratio is unaffected.

But we cannot see an initial DCS signal, so as a very
conservative guess, assume the difference is the same as

ǫGP

ǫInitial

∣

∣

∣

∣

CF-Data

compared with
ǫGP

ǫInitial

∣

∣

∣

∣

CF-MC

which we can measure.

This ratio can only be right if the MC really models what the GP
is doing to the data. (Many studies confirm initial selectionǫ is
accurate.)
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GP Efficiency Cross-check
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Within errors, the CF selection efficiencies are the same.

Discrepancy is2.6 ± 2.6%. I include a2.6% error on our
knowledge ofǫDCS/ǫCF.

Eric Vaandering – A Search for Doubly Cabibbo Suppressed Decays Using Genetic Programming – p. 44



Other Systematic Uncertainties
In addition to GP specific sources of systematic error, consider
other sources of uncertainty on our knowledge ofǫDCS/ǫCF.

1. Uncertainties in resonance structure ofΛ+
c → pK−π+

• Calculate with world average incoherent and a simpler
model with noΛ(1520)0π+

• RMS is 2.1%

2. Uncertainties in resonance structure ofΛ+
c → pK+π−.

RMS of
• 100% non-resonant, 100%∆(1232)0K +, and 100%

pK∗(892)0

• RMS is 5.3%
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D+
s Initial Sample

Contributions fromD+ → K −π+π+ (mis-ID) and Cabibbo
suppressed decayD+ → K −K +π+ included.
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Signals after GP selection
D+ → K −π+π+ (mis-ID) events removed
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GP retains 21% of original events, DCS BG reduced∼ 500×

Optimization uses1st degree polynomial, analysis2nd deg.
No real difference (27.9 ± 9.3 events for1st deg.)

Same systematic tests asΛ+
c , same results
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Evolution of Population
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Evolution of Best Programs
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Minor progress right up to end
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Best tree (63
rd generation)

<=>

sign

+

neg

<

Clp Iso1

<

NOT

IF

<=>

<

+

σℓ σM

<

neg

<

Clp Iso1

OR

IF

×

<

σℓ <

0.63078 Σp2
T

IF

NOT

Iso2

OoT

∆K π1

>

max

<

0.63078 Σp2
T

XOR

p Iso2

<

>

max

Iso2 <

f(n)

χ2
π1

Σp2
T

<

IF

∆K π1 Cls

√

/

+

πcon1 χ2
K1

IF

p OoT

√

/

+

πcon1 χ2
K1

min

-1.09163 −

NOT

POT

DL

NOT

OoT

IF

+

neg

Iso2

χ2
π1

IF

∆K π1 Cls

NOT

POT

DL

Eric Vaandering – A Search for Doubly Cabibbo Suppressed Decays Using Genetic Programming – p. 50



D+
s Systematic Uncertainties

Same tests as forΛ+
c , similar results.

1. Uncertainties in resonance structure ofD+
s → K −K +π+

• Calculate with world average incoherent and a FOCUS
coherent model

• RMS is 2.6%

2. Uncertainties in resonance structure ofD+
s → K +K +π−.

RMS of
• 100% non-resonant, 100%K∗

0(1430)0K +, and 100%
K∗(892)0K +

• RMS is 10.7%
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Systematic Uncertainties
We tabulate and add in quadrature all uncertainties on relative
reconstruction efficiency,ǫDCS/ǫCF:

Syst. Unc. (%)
Source Λ+

c D+
s

MC statistics 0.6 0.4
DCS resonances 5.3 10.7
CF resonances 2.1 2.6
GP filter 2.6 3.5
Total 6.3 11.6
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Including systematics
Often systematic uncertainties on limit measurements are
ignored. Instead, we use our % uncertainty in our knowledge of
the DCS vs. CF efficiencies and use a technique from Convery
(SLAC-TN-03-001) to calculate systematic errors. This method
builds on the Feldman-Cousins method and can be applied to
situations with more background.

In this case we get a BR probability of

p(B) ∝
1

√

B2

2σ2
B

+ Ŝ2

2σ2
S

e
−(B−B̂)2/2

„

B2σ2
S

Ŝ2 +σ2
B

«

whereB̂ is nominal BR,σB is its error andσS/Ŝ is the percent

error on our knowledge of the efficiency. AssumesσS/Ŝ . 0.25.
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Limit Determination
We then integrateP (B) over the physical range to find 90%
coverage/limit.
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Summary of measurements
With this method, we can express our measurements as either
central values with errors or limits:

Decay mode Central Value Limit (90% CL)
BR(Λ+

c →pK+
π−)

BR(Λ+
c →pK−

π+)
(0.05 ± 0.26 ± 0.02)% < 0.46%

BR(D+
s →K +K +

π−)

BR(D+
s →K −K +

π+)
(0.52 ± 0.17 ± 0.11)% < 0.78%

• First limits for these decays (or any DCSD ofD+
s or Λ+

c )

• Approach sensitivity of expected values∼ tan4 θc = 0.25%

• There is a hint of a signal inD+
s → K +K +π− which would

not fit with naïve theory
• Because the decayD+ → K +π+π− has a Rel. BR

≈ 3 tan4 θc, D+
s → K +K +π− should be≈ 1

3
tan4 θc
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Conclusions (Analysis)
• These are the first limits for DCS decays ofD+

s andΛ+
c

• Efficiency of GP event selection is well modeled in FOCUS
• I’ve published two articles on this subject

• NIM article on method, applied toD+ → K +π+π−:
hep-ex/0503007, NIMA 551, pg. 504

• D+
s andΛ+

c rel. branching ratio results:
hep-ex/0507103, PLB 624, pg. 166
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Conclusions (GP Method)
• I hope I’ve been able to give you a flavor of Genetic

Programming.
• We have shown that GP can be used in HEP event selection

(this is the first application on HEP data).
• Can be used to improve sensitivity over traditional

techniques (factors of
√

2 are possible).
• Trees are very complex and any attempt to understand the

whole thing may be pointless.
• What it is doing is visible. Why it works may not be.
• Can be changed and disassembled into parts.
• One combination which appeared often is now being

used in other analyses.
• I think this novel method deserves further exploration.

Thank you for your attention.
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